## Synthesis of (*R*)-(4-Methoxy-3,5-dihydroxyphenyl)glycine Derivatives: The Central Amino Acid of Vancomycin and Related Agents

## Dale L. Boger,\* Robert M. Borzilleri, and Seiji Nukui

Department of Chemistry, The Scripps Research Institute, 10666 North Torrey Pines Road, La Jolla, California 92037

## Received January 12, 1996

Vancomycin (1)<sup>1</sup> was isolated in 1956 from *Streptomy*ces orientalis and its structure and stereochemistry were ultimately secured over 25 years later by a combination of chemical degradation,<sup>1b</sup> NMR,<sup>1d,e</sup> and X-ray crystallography studies.<sup>1f</sup> This prototypic member of a large and growing class of clinically effective glycopeptide antibiotics<sup>2-4</sup> which includes teicoplanin,<sup>2a</sup> ristocetin,<sup>2b</sup>  $\beta$ -avoparcin,<sup>2c</sup> actaplanin (A4696),<sup>2d</sup> and A33512B<sup>2e</sup> is characterized by a polycyclic heptapeptide backbone composed of two 16-membered biaryl ether ring systems (CD and DE). Central to the characteristic bicyclic ring system is a (*R*)-(3,4,5-trihydroxyphenyl)glycine in which the meta 3,5-phenols form biaryl ethers to link the CD and DE rings. Herein, we report an asymmetric synthesis of **2–5** constituting selectively protected derivatives of (R)-(3,4,5-trihydroxyphenyl)glycine<sup>5</sup> which have been utilized in our efforts<sup>6</sup> on the development of synthetic approaches<sup>4</sup> to vancomycin and related agents.

Key to the approach which complements the disclosed routes to the asymmetric synthesis of phenylglycines<sup>7</sup> was the Sharpless asymmetric dihydroxylation<sup>8</sup> of a substituted styrene for introduction of the  $\alpha$ -center absolute stereochemistry as well as functionality for subsequent elaboration to the phenylglycine carboxylate. Following selective C4 *O*-methylation of methyl 3,4,5-trihydroxybenzoate as detailed by Pedro,<sup>9</sup> the remaining C3 and C5 phenols were protected as benzyl ethers



(Scheme 1). Two-step conversion of the ester 6 to the aldehyde  $\pmb{8}^{10}$  (95  $\times$  90%) and subsequent Wittig reaction with methylenetriphenylphosphorane provided the substituted styrene 9 (70%) and the key substrate for asymmetric dihydroxylation. Treatment of 9 with ADmix- $\alpha^{8}$  (1:1 *t*-BuOH/H<sub>2</sub>O, 0.1 M, 25 °C, 20 h) provided **10** in superb conversions (97%) and high ee's (87% ee). The optical purity of **10** was assessed directly by chiral phase HPLC separation of the enantiomers on an analytical Diacel Chiralpak AD column ( $0.46 \times 25$  cm, 10% 2-propanol-hexane, 0.5 mL/min) alongside racemic material. The desired (S)-10 eluted with a retention time of 58.9 min and the enantiomer, (*R*)-10, eluted with a retention time of 55.1 min (ratio = 93.5:6.5). Following selective protection of the primary alcohol of 10 as its TBDMS ether 11, direct azide displacement of the secondary alcohol upon Mitsunobu activation (2.5 equiv of DPPA, 2.5 equiv of DEAD, THF, -20 to 25 °C, 2 h)<sup>11</sup> with clean inversion of stereochemistry and subsequent reduction of the crude azide 12 (2 equiv of Ph<sub>3</sub>P, THF-H<sub>2</sub>O, 45 °C, 21 h, 65% for two steps) provided the amine 13. Small amounts of elimination (7%) but no loss of the stereochemical integrity was observed during the displacement. N-CBZ protection of 13 provided 14 (90%), and deprotection of the TBDMS ether provided the key alcohol 15 (92%). The optical purity of 15 obtained directly from 10 without intervening recrystallizations was 84-87% ee indicating a maintenance of the stereochemical integrity throughout the sequence and of the crystalline intermediates, 15 proved to be the most convenient for storage, assessment, and enrichment of the optical purity. One recrystallization from 50% EtOAc-hexane routinely enriched the optical purity of **15** from 87% ee to  $\geq$  94% ee. The optical purity of 15 was assessed on a Chiralpak AD HPLC column (0.46 × 25 cm, 30% 2-propanolhexane, 1.0 mL/min), (*R*)-15  $t_{\rm R}$  = 13.0 min and (*S*)-15  $t_{\rm R}$ = 7.9 min.

<sup>(1) (</sup>a) McCormick, M. H.; Stark, W. M.; Pittenger, G. F.; Pittenger, R. C.; McGuire, G. M. Antibiot. Annu. **1955–1956**, 606. (b) Harris, C. M.; Kopecka, H.; Harris, T. M. J. Am. Chem. Soc. **1983**, 105, 6915. (c) Harris, C. M.; Harris, T. M. J. Am. Chem. Soc. **1982**, 104, 4293. (d) Williams, D. H.; Kalman, J. R. J. Am. Chem. Soc. **1977**, 99, 2768. (e) Williamson, M. P., Williams, D. H. J. Am. Chem. Soc. **1981**, 103, 6580. (f) Sheldrick, G. M.; Jones, P. G.; Kennard, O.; Williams, D. H.; Smith, G. A. Nature **1978**, 271, 223.

<sup>(</sup>f) Sheldrick, G. M.; Jones, P. G.; Kennard, G.; Williams, D. H., Shildi, G. A. *Nature* **1978**, *271*, 223.
(2) (a) Cornell, I. C.; Bardone, M. R.; Deparli, A.; Ferrari, P.; Tuan, G.; Gallo, G. G. *J. Antibiot.* **1984**, *37*, 621. (b) Harris, C. M.; Kibby, J. J.; Fehlner, J. R.; Raabe, A. B.; Barber, T. A.; Harris, T. M. *J. Am. Chem. Soc.* **1979**, *101*, 437. (c) McGahren, W. J.; Martin, J. H.; Morton, G. O.; Hargreaves, R. T.; Leese, R. A.; Lovell, F. M.; Ellestad, G. A.; O'Brien, E.; Holker, J. S. E. *J. Am. Chem. Soc.* **1980**, *102*, 1671. (d) Hunt, A. H.; Debono, M.; Merkel, K. E.; Barnhart, M. *J. Org. Chem.* **1984**, *49*, 635. (e) Debono, M.; Molloy, R. M.; Barnhart, M.; Dorman, D. E. *J. Antibiot.* **1980**, *33*, 1407.

<sup>(3)</sup> Williams, D. H.; Rajananda, V.; Williamson, M. P.; Bojesen, G. *Top. Antibiot. Chem.* **1980**, *5*, 119. Barna, J. C. J.; Williams, D. H. *Annu. Rev. Microbiol.* **1984**, *38*, 339. Williams, D. H. *Acc. Chem. Res.* **1984**, *17*, 364. Williams, D. H.; Searle, M. S.; Westwell, M. S.; Mackay, J. P.; Groves, P.; Beauregard, D. A. *Chemtracts: Org. Chem.* **1994**, *7*, 133.

<sup>(4)</sup> Rao, A. V. R.; Gurjar, M. K.; Reddy, K. L.; Rao, A. S. *Chem. Rev.* **1995**, *95*, 2135. Evans, D. A.; DeVries, K. M. *Drugs Pharm. Sci.* **1994**, *63*, 63.

<sup>(5)</sup> Zhu, J.; Bouillon, J.-P.; Singh, G. P.; Chastanet, J.; Beugelmans, R. *Tetrahedron Lett.* **1995**, *36*, 7081.

<sup>(6)</sup> Boger, D. L.; Borzilleri, R. M.; Nukui, S. *Bioorg. Med. Chem. Lett.* **1995**, *5*, 3091. Boger, D. L.; Nomoto, Y.; Teegarden, B. R. *J. Org. Chem.* **1993**, *58*, 1425.

<sup>(7)</sup> Williams, R. M.; Hendrix, J. A. Chem. Rev. 1992, 92, 889.

<sup>(8)</sup> Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. *Chem. Rev.* **1994**, *94*, 2483. Sharpless, K. B.; Amberg, W.; Bennani, Y. L.; Crispino, G. A.; Hartung, J.; Jeong, K.-S.; Kwong, H.-L.; Morikawa, K.; Wang, Z.-M.; Xu, D.; Zhang, X.-L. *J. Org. Chem.* **1992**, *57*, 2768.

<sup>(9)</sup> Cardona, M. L.; Fernandez, M. I.; Garcia, M. B.; Pedro, J. R. *Tetrahedron* **1986**, *42*, 2725.

<sup>(10)</sup> Sethi, M. L.; Taneja, S. C.; Dhar, K. L.; Atal, C. K. *Indian J. Chem.* **1981**, *20B*, 770.

<sup>(11)</sup> Bansi, L.; Pramanik, B. N.; Manhas, M. S.; Bose, A. K. Tetrahedron Lett. 1977, 18, 1977.



Direct oxidation of the primary alcohol to the desired sensitive carboxylic acid **2** was accomplished best using *N*-oxoammonium salts<sup>12</sup> in combination with NaOCl in a buffered solution (2 equiv of 4-6% NaOCl, 1.1 equiv of TEMPO, 0.1 equiv of KBr, acetone-5% aqueous NaH-CO<sub>3</sub>, 0 °C, 2 h, 78%). In the optimization of this reaction it was found that 1.1 equiv of TEMPO was necessary to obtain the desired oxidation product. If a catalytic amount (ca. 0.1 equiv) of TEMPO was employed or Ca-(OCl)<sub>2</sub><sup>13</sup> was substituted for NaOCl, the chlorinated aromatic derivative 16 was isolated as the major product (eq 1). Presumably the TEMPO scavenges any chlorine which is liberated during the reaction. Similarly, propylene oxide could be utilized as the chlorine scavenger; however, the conversions to 15 were lower (40-50%). Using this optimized procedure, 2 could be obtained in good chemical yields (78%) with little or no racemization (94% ee). This could also be accomplished by conducting the oxidation in two separate steps without purification of the sensitive intermediate aldehyde by Dess-Martin oxidation (2 equiv, 30 min, CH<sub>2</sub>Cl<sub>2</sub>, 25 °C) followed by NaClO<sub>2</sub> treatment (9 equiv, 30% 0.7 M aqueous NaH<sub>2</sub>-PO<sub>4</sub>-*t*-BuOH, excess 2-methyl-2-butene, 25 °C, 20 min)

(12) (a) Anelli, P. L.; Biffi, C.; Montanari, F.; Quici, S. *J. Org. Chem.* **1987**, *52*, 2559. (b) Inokuchi, T.; Matsumoto, S.; Nishiyama, T.; Torri, S. *J. Org. Chem.* **1990**, *55*, 462. (c) Miyazawa, T.; Endo, T.; Shiihashi, S.; Okawara, M. *J. Org. Chem.* **1985**, *50*, 1332. which provided 2 in comparable chemical yields (75-77%) but with surprisingly little or no racemization (90-94% ee). Because of the ease of scale up, this latter procedure was used to routinely provide our material.<sup>13</sup> In contrast, alcohol 15 underwent oxidation in the presence of PDC (4.5 equiv, DMF, 25 °C, 21 h) to provide 2 in only modest yields (20-30%) with extensive decomposition. Alternative oxidative conditions examined including RuCl<sub>3</sub> (0.2 equiv)-NaIO<sub>4</sub> (3 equiv, CCl<sub>4</sub>-MeCN-H<sub>2</sub>O, 3:1:1, 25 °C, 24 h) or Jones oxidation led to decomposition, and Pt/C (0.1 equiv)-O<sub>2</sub> (NaHCO<sub>3</sub>, H<sub>2</sub>Oacetone, 25 °C, 22 h) led to recovered starting material. Protection of **2** as its *tert*-butyl ester **3** ( $\geq$ 94% ee).<sup>14</sup> which was selected over the methyl ester in order to minimize potential racemization when employed in subsequent synthetic efforts, followed by uneventful CBZ deprotection by hydrogenolysis provided 4. Similarly, CBZ deprotection of 2 followed by N-BOC protection of the free amino acid provided 5.



## **Experimental Section**

**Methyl 3,5-Dihydroxy-4-methoxybenzoate.** This compound was prepared by the procedure reported:<sup>9</sup> white needles, mp 147–148 °C (30% EtOAc–hexane), lit.<sup>15</sup> mp 144–145 °C; <sup>1</sup>H NMR (DMSO- $d_6$ , 400 MHz)  $\delta$  9.50 (s, 1H), 6.96 (s, 2H), 3.82 (s, 3H), 3.75 (s, 3H); <sup>13</sup>C NMR (DMSO- $d_6$ , 100 MHz)  $\delta$  166.1, 150.7, 139.7, 124.5, 108.5, 59.7, 51.9; IR (neat)  $\nu_{max}$  3386, 2996, 1709 cm<sup>-1</sup>; FABHRMS (NBA–NaI) m/z 221.0430 (M<sup>+</sup> + Na, C<sub>9</sub>H<sub>10</sub>O<sub>5</sub> requires 221.0426).

Methyl 3,5-Bis(benzyloxy)-4-methoxybenzoate (6). A solution of methyl 3,5-dihydroxy-4-methoxybenzoate (4.3 g, 22 mmol) in anhydrous DMF (25 mL) was sequentially treated with K<sub>2</sub>CO<sub>3</sub> (11 g, 83 mmol) and PhCH<sub>2</sub>Cl (6.5 mL, 57 mmol). The reaction mixture was warmed at 110 °C for 1 h, cooled to 25 °C, and quenched by the addition of H<sub>2</sub>O (25 mL). The mixture was stirred for 15 min while the product precipitated. The resulting grey solid was collected by filtration and was washed with  $H_2O$  (3  $\times$  15 mL), dried in a vacuum desiccator, and purified by recrystallization from 20% EtOAc-hexane to afford 6 (7.5 g, 92%) as white needles: mp 116.5-118.0 °C (25% EtOAc-hexane), lit. mp 116-11810 and 118-119 °C;<sup>16</sup> <sup>1</sup>H NMR (CDCl<sub>3</sub>, 250 MHz)  $\delta$  7.50–7.31 (m, 12H), 5.17 (s, 4H), 3.95 (s, 3H), 3.89 (s, 3H); <sup>13</sup>C NMR  $(CDCl_3, 62.5 \text{ MHz}) \delta 166.5, 152.1 (2C), 143.5 (2C), 136.6,$ 128.5 (4C), 127.9 (2C), 127.3 (4C), 124.9, 109.1 (2C), 71.0 (2C), 60.9, 52.1; IR (neat)  $v_{\text{max}}$  3019, 2933, 1717 cm<sup>-1</sup>; FABHRMS (NBA-NaI) m/z 401.1373 (M<sup>+</sup> + Na, C<sub>23</sub>H<sub>22</sub>O<sub>5</sub> requires 401.1365).

<sup>(13)</sup> Nwaukwa, S. O.; Keehn, P. M. *Tetrahedron Lett.* **1982**, *23*, 35. Dess, D. B.; Martin, J. C. *J. Org. Chem.* **1983**, *48*, 4155. Corey, E. J.; Kania, R. S. *J. Am. Chem. Soc.* **1996**, *118*, 1229 and references cited therein. Smith, A. B., III; Leenay, T. L. J. Am. Chem. Soc. **1989**, *111*, 5761.

<sup>(14)</sup> Anderson, G. W.; Callahan, F. M. J. Am. Chem. Soc. 1960, 82, 3359.

<sup>(15)</sup> Krauss, A. S.; Taylor, W. C. Aust. J. Chem. **1991**, 44, 1307.

<sup>(16)</sup> Haslam, E.; Uddin, M. *Tetrahedron* 1968, 24, 4015.
(17) Degraw, J. I.; Christensen, J. C.; Brown, V. H.; Cory, M. J. J. *Heterocycl. Chem.* 1974, 11, 363.

This reaction has also been conducted on large scale with 115 g of  $\bf{6}$  (92%) obtained from 65 g of starting phenol.

3,5-Bis(benzyloxy)-4-methoxybenzyl Alcohol (7). A cooled suspension of LiAlH<sub>4</sub> (1.2 g, 32 mmol) in anhydrous THF (30 mL) at 0 °C was treated dropwise with a solution of 6 (6.1 g, 16 mmol) dissolved in THF (25 mL). The resulting mixture was warmed to 25 °C, stirred for 40 min, and recooled to 0 °C before saturated aqueous NH<sub>4</sub>Cl (10 mL) was added slowly. The reaction mixture was then filtered, and the remaining solid was washed with EtOAc (4  $\times$  15 mL). The volatiles were removed in vacuo, and the remaining residual white solid was purified by recrystallization from 50% EtOAchexane to afford 7 (5.4 g, 95%) as white prisms: mp 104.0-104.5 °C (40% EtOAc-hexane), lit. mp 104-105<sup>10</sup> and 105–106 °C;<sup>17</sup> <sup>1</sup>H NMR (CDCl<sub>3</sub>, 250 MHz)  $\delta$  7.48– 7.32 (m, 10H), 6.64 (s, 2H), 5.11 (s, 4H), 4.52 (d, 2H, J =5.7 Hz), 3.90 (s, 3H);  $^{13}\mathrm{C}$  NMR (CDCl\_3, 62.5 MHz)  $\delta$  152.5 (2C), 138.5, 137.0 (2C), 136.5, 128.4 (4C), 127.8 (2C), 127.1 (4C), 106.2 (2C), 70.9 (2C), 65.1, 60.9; IR (neat)  $\nu_{\text{max}}$ 3313, 3065, 3033, 2937 cm<sup>-1</sup>; FABHRMS (NBA-NaI) m/z 373.1404 (M<sup>+</sup> + Na, C<sub>22</sub>H<sub>22</sub>O<sub>4</sub> requires 373.1416). Anal. Calcd for C<sub>22</sub>H<sub>22</sub>O<sub>4</sub>: C, 75.46; H, 6.33. Found: C, 75.67; H. 6.16.

This reaction has also been conducted on a large scale with 77 g of 7 (79%) obtained from 115 g of 6.

3,5-Bis(benzyloxy)-4-methoxybenzaldehyde (8). A solution of 7 (5.2 g, 15 mmol) in anhydrous  $CH_2Cl_2$  (60 mL) was treated with activated MnO<sub>2</sub> (25 g) at 25 °C, and the resulting suspension was stirred for 2 h. The reaction mixture was filtered through a Celite pad (CH<sub>2</sub>- $Cl_2$ , 5 × 50 mL), and the solvent was removed *in vacuo*. The crude residue was purified by recrystallization from 50% EtOAc-hexane to afford 8 (4.4 g, 90%) as a white powder: mp 85.5-87.5 °C (50% EtOAc-hexane), lit. mp 87–88<sup>10</sup> and 85–88 °C;<sup>15</sup> <sup>1</sup>H NMR (CDCl<sub>3</sub>, 250 MHz)  $\delta$ 9.79 (s, 1H), 7.49-7.33 (s, 10H), 7.18 (s, 2H), 5.19 (s, 4H), 3.99 (s, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 62.5 MHz)  $\delta$  190.9, 152.9 (2C), 144.9, 136.4 (2C), 131.5, 128.7 (4C), 128.1 (2C), 127.3 (4C), 109.0 (2C), 71.1 (2C), 61.0; IR (neat) v<sub>max</sub> 3064, 3032, 2939, 2830, 2731, 1693, 1587 cm<sup>-1</sup>; FABHRMS (NBA–NaI) m/z 349.1435 (M<sup>+</sup> + H, C<sub>22</sub>H<sub>20</sub>O<sub>4</sub> requires 349.1440). Anal. Calcd for C<sub>22</sub>H<sub>20</sub>O<sub>4</sub>: C, 75.90; H, 5.79. Found: C, 76.17; H, 5.49.

This reaction has also been conducted on a large scale with PCC ( $CH_2Cl_2$ ) with 64 g of **8** (85%) obtained from 77 g of **7**.

**3,5-Bis(benzyloxy)-4-methoxystyrene (9).** A suspension of methyltriphenylphosphonium bromide (12.3 g, 34.5 mmol) in anhydrous THF (70 mL) at -40 °C was treated with n-BuLi (1.9 M solution in hexane, 18.1 mL, 34.5 mmol) dropwise over 15 min, and the resulting solution was allowed to warm to -10 °C. After 40 min, the mixture was cooled to -30 °C and a solution of 8 (4.00 g, 11.5 mmol) in THF (7 mL) was added dropwise over 5 min. The resulting orange reaction mixture was warmed to 25 °C, stirred for 1.5 h, quenched by the addition of  $H_2O$  (40 mL), and extracted with EtOAc (4  $\times$  20 mL). The combined organic phases were washed with  $H_2O$  (2)  $\times$  30 mL) and saturated aqueous NaCl (75 mL), dried (MgSO<sub>4</sub>), and concentrated *in vacuo*. Chromatography (SiO<sub>2</sub>, 4  $\times$  24 cm, 10–20% EtOAc-hexane gradient elution) afforded 9 (3.58 g, 90%) as white needles: mp 68.0-68.5 °C (20% EtOAc-hexane); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 250 MHz)  $\delta$  7.50–7.31 (m, 10H), 6.71 (s, 2H), 6.58 (dd, 1H, J = 10.8, 17.5 Hz), 5.58 (d, 1H, J = 17.5 Hz), 5.18 (d, 1H, J = 10.8 Hz), 5.16 (s, 4H), 3.92 (s, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>,

62.5 MHz)  $\delta$  152.6 (2C), 140.1, 137.1, 136.5 (2C), 133.1, 128.5 (4C), 127.8 (2C), 127.2 (4C), 113.2, 106.1 (2C), 71.1 (2C), 61.0; IR (neat)  $\nu_{max}$  3033, 2938, 1580, 1505, 915, 842 cm<sup>-1</sup>; FABHRMS (NBA–NaI) m/z 347.1662 (M<sup>+</sup> + H, C<sub>23</sub>H<sub>22</sub>O<sub>3</sub> requires 347.1647). Anal. Calcd for C<sub>23</sub>H<sub>22</sub>O<sub>3</sub>: C, 79.81; H, 6.40. Found: C, 80.10; H, 6.29.

1(S)-[3,5-Bis(benzyloxy)-4-methoxyphenyl]-2-hy**droxyethanol (10).** A stirred suspension of AD-mix- $\alpha^8$ (Aldrich, 8.1 g, 1.4 g/mmol) in *t*-BuOH-H<sub>2</sub>O (1:1, 58 mL) was treated with 9 (2.0 g, 5.8 mmol) at 25 °C, and the resulting two-phase reaction mixture was stirred vigorously at 25 °C for 20 h. Sodium sulfite (Na<sub>2</sub>SO<sub>3</sub>, 8.7 g, 1.5 g/mmol) was added, and the mixture was stirred for 30 min and diluted with EtOAc (50 mL). After separation of the layers, the aqueous phase was further extracted with EtOAc (3  $\times$  25 mL). The combined organic layers were washed with H<sub>2</sub>O (50 mL) and saturated aqueous NaCl (50 mL), dried (MgSO<sub>4</sub>), and concentrated in vacuo. The crude, white solid was purified by recrystallization from 50% EtOAc-hexane to afford 10 (2.1 g, 97%, 87% ee) as white needles: mp 103-104 °C (20% EtOAc-hexane);  $[\alpha]^{25}_{D}$  +21 (*c* 1.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 250 MHz)  $\delta$  7.44–7.28 (m, 10H), 6.61 (s, 2H), 5.07 (s, 4H), 4.61 (dd, 1H, J = 3.4, 7.8 Hz), 3.87 (s, 3H), 3.53 (ddd, 2H, J = 3.4, 7.8, 11.3 Hz), 3.05 (br s, 1H, OH), 2.48 (br s, 1H, OH); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 62.5 MHz) δ 152.4 (2C), 138.6, 136.9 (2C), 136.2, 128.4 (4C), 127.8 (2C), 127.3 (4C), 105.4 (2C), 74.4, 70.9 (2C), 67.9, 60.8; IR (neat)  $\nu_{max}$  3386, 3066, 3033, 2933, 2871 cm<sup>-1</sup>; FAB-HRMS (NBA–CsI) m/z 513.0661 (M<sup>+</sup> + Cs, C<sub>23</sub>H<sub>24</sub>O<sub>5</sub> requires 513.0678). Anal. Calcd for C<sub>23</sub>H<sub>24</sub>O<sub>5</sub>: C, 72.67; H, 6.36. Found: C, 72.56; H, 6.37.

1(S)-2-[(tert-Butyldimethylsilyl)oxy]-1-[3,5-bis(benzyloxy)-4-methoxyphenyl]ethanol (11). A solution of 10 (1.8 g, 4.7 mmol) in anhydrous DMF (20 mL) was treated with *t*-BuMe<sub>2</sub>SiCl (0.86 g, 5.7 mmol) and imidazole (0.45 g, 6.6 mmol) at 0 °C under Ar. The resulting reaction mixture was warmed to 25 °C and stirred for 5 h before H<sub>2</sub>O (40 mL) was added. The aqueous phase was extracted with EtOAc (3  $\times$  30 mL), and the combined extracts were washed with H<sub>2</sub>O (75 mL), saturated aqueous NaCl (75 mL), dried (MgSO<sub>4</sub>), and concentrated *in vacuo*. Flash chromatography (SiO<sub>2</sub>,  $5 \times 25$  cm, 10-20% EtOAc-hexane gradient elution) afforded **11** (2.0 g, 85%) as a colorless oil:  $[\alpha]^{25}_{D}$  +12 (*c* 0.6, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 250 MHz) & 7.48-7.28 (m, 10H), 6.66 (s, 2H), 5.14 (s, 4H), 4.60 (ddd, 1H, J = 2.0, 3.6, 8.1 Hz), 3.89 (s, 3H), 3.66 (dd, 1H, J = 3.6, 10.1 Hz), 3.44 (dd, 1H, J = 8.1, 10.1 Hz), 2.99 (d, 1H, J = 2.0 Hz), 0.94 (s, 9H), 0.08 (s, 6H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 62.5 MHz) δ 152.4 (2C), 138.9, 137.1 (2C), 135.7, 128.4 (4C), 127.7 (2C), 127.3 (4C), 105.9 (2C), 74.1, 71.0 (2C), 68.8, 60.8, 25.8 (3C), 18.2, -5.4 (2C);IR (film)  $\nu_{\text{max}}$  3475, 3064, 3032, 2952, 2927, 2856 cm<sup>-1</sup>; FABHRMS (NBA-CsI) m/z 627.1570 (M<sup>+</sup> + Cs, C<sub>29</sub>H<sub>38</sub>O<sub>5</sub>-Si requires 627.1543).

**1**(*R*)-2-[(*tert*-Butyldimethylsilyl)oxy]-1-[3,5-bis(benzyloxy)-4-methoxyphenyl]ethylamine (13). A solution of **11** (0.94 g, 1.9 mmol) in anhydrous THF (14 mL) at -20 °C was treated sequentially with Et<sub>3</sub>N (1.3 g, 4.8 mmol) diphenyl phosphorazidate (DPPA, 1.0 mL, 4.8 mmol), and diethyl azodicarboxylate (DEAD, 0.75 mL, 4.8 mmol). The reaction mixture was warmed to 25 °C, stirred for 2 h, and concentrated *in vacuo*. Chromatography (SiO<sub>2</sub>, 4 × 24 cm, 5–10% EtOAc-hexane gradient elution) afforded 0.9 g of an inseparable 9:1 mixture of azide **12** and the corresponding elimination product, respectively, as a colorless oil which was carried on together into the subsequent step. For **12**: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.46–7.31 (m, 10H), 6.55 (s, 2H), 5.12 (s, 4H), 4.42 (dd, 1H, J = 4.2, 8.3 Hz), 3.87 (s, 3H), 3.67 (dd, 1H, J = 4.2, 10.6 Hz), 3.61 (dd, 1H, J = 8.3, 10.6 Hz), 0.89 (s, 9H), 0.04 (s, 6H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  152.6 (2C), 139.4, 137.0 (2C), 132.3, 128.5 (4C), 127.9 (2C), 127.4 (4C), 106.8 (2C), 71.2 (2C), 68.3, 67.3, 60.9, 26.0 (3C), 18.3, -5.4 (2C); IR (film)  $\nu_{max}$  3065, 3032, 2928, 2857, 2099 cm<sup>-1</sup>; MS (electrospray) m/z 542 (M<sup>+</sup> + Na).

The mixture of azide **12** and the elimination product from the previous reaction (0.9 g) in THF (17 mL) was treated with  $Ph_3P$  (0.91 g, 3.5 mmol) and  $H_2O$  (0.31 mL, 0.017 mol) at 25 °C. The resulting reaction mixture was warmed at 45 °C for 21 h. The volatiles were removed in vacuo, and the residue was purified by flash chromatography (SiO\_2, 4  $\times$  24 cm, 5–20% EtOAc–hexane gradient elution) to afford 13 (0.61 g, 65% based on starting alcohol **11**) and the elimination product (68 mg, 7%) as colorless oils. For **13**:  $[\alpha]^{25}_{D}$  -9.7 (*c* 2.7, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  7.45–7.30 (m, 10H), 6.66 (s, 2H), 5.18 (s, 4H), 3.93 (dd, 1H, J = 3.9, 8.6 Hz), 3.87 (s, 3H), 3.57 (dd, 1H, J = 3.9, 9.8 Hz), 3.37 (dd, 1H, J =8.6, 9.8 Hz), 0.88 (s, 9H), 0.02 (s, 6H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 62.5 MHz) & 152.3 (2C), 138.5, 138.0, 137.1 (2C), 128.3 (4C), 127.7 (2C), 127.2 (4C), 106.4 (2C), 70.9 (2C), 69.4, 60.7, 57.5, 25.8 (3C), 18.2, -5.5 (2C); IR (film)  $\nu_{\text{max}}$  3383, 3064, 3032, 2953, 2928, 2856 cm<sup>-1</sup>; FABHRMS (NBA-CsI) m/z 626.1723 (M<sup>+</sup> + Cs, C<sub>29</sub>H<sub>39</sub>NO<sub>4</sub>Si requires 626.1703).

For the elimination product: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 250 MHz)  $\delta$  7.54–7.32 (m, 10H), 6.77 (d, 1H, J = 12.1 Hz), 6.49 (s, 2H), 5.90 (d, 1H, J = 12.1 Hz), 5.15 (s, 4H), 3.90 (s, 3H), 0.96 (s, 9H), 0.20 (s, 6H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 62.5 MHz)  $\delta$  152.6 (2C), 141.9, 137.3 (2C), 133.8, 132.0, 128.5 (4C), 127.8 (2C), 127.2 (4C), 112.6, 105.2 (2C), 71.2 (2C), 61.0, 25.6 (3C), 18.3, -5.2 (2C); IR (film)  $\nu_{\text{max}}$  3032, 2953, 2928, 2857, 1758, 1645 cm<sup>-1</sup>.

1(R)-N-[(Benzyloxy)carbonyl]-2-[(tert-butyldimethylsilyl)oxy]-1-[3,5-bis(benzyloxy)-4-methoxyphenyl]ethylamine (14). A solution of 13 (0.20 g, 0.41 mmol) in THF-H<sub>2</sub>O (1:1, 4.0 mL) was treated with Na<sub>2</sub>-CO<sub>3</sub> (86 mg, 0.81 mmol) and benzyl chloroformate (64 µL, 0.46 mmol) at 25 °C under Ar. After 2.5 h, the reaction mixture was poured into H<sub>2</sub>O (10 mL) and extracted with EtOAc (4  $\times$  10 mL). The combined organic layers were washed with  $H_2O$  (3  $\times$  10 mL) and saturated aqueous NaCl ( $3 \times 10$  mL), dried (MgSO<sub>4</sub>), filtered, and concentrated in vacuo. Chromatography (SiO<sub>2</sub>,  $3.5 \times 10$  cm, 10-25% EtOAc-hexane gradient elution) afforded **14** (0.22 g, 90%) as a white solid: mp 84.5–85.0 °C (20% EtOAc-hexane);  $[\alpha]^{25}_{D}$  –15.2 (c 1.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) δ 7.44–7.29 (m, 15H), 6.58 (s, 2H), 5.40 (d, 1H, NH, J = 7.4 Hz), 5.08 (s, 6H), 4.65-4.60 (m, 1H), 3.87 (s, 3H), 3.80 (dd, 1H, J = 4.0, 10.2 Hz), 3.65-3.58 (m, 1H), 0.88 (s, 9H), -0.08 (s, 3H), -0.10 (s, 3H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz), δ 156.4, 152.5 (2C), 138.6, 136.7 (2C), 134.0, 132.4, 128.4 (6 C), 128.0, 127.9 (2C), 127.4 (6C), 106.3 (2C), 71.0 (2C), 66.1, 66.7, 60.8, 56.6, 26.1 (3C), 18.5, -5.5 (2C); IR (neat)  $\nu_{\text{max}}$  3358, 3064, 3032, 2928, 2856, 1688, 1593, 1532 cm<sup>-1</sup>; FAB-HRMS (NBA-CsI) m/z 760.2042 (M<sup>+</sup> + Cs, C<sub>37</sub>H<sub>45</sub>NO<sub>6</sub>-Si requires 760.2070). Anal. Calcd for C<sub>37</sub>H<sub>45</sub>NO<sub>6</sub>Si: C, 70.84; H, 7.22; N, 2.23. Found: C, 70.66; H, 7.28; N, 2.21.

1(*R*)-*N*-[(Benzyloxy)carbonyl]-1-[3,5-bis(benzyloxy)-4-methoxyphenyl]-2-hydroxyethylamine (15). A solution of 14 (0.22 g, 0.36 mmol) in THF (5 mL) at 0 °C was treated dropwise with a 1.0 M solution of  $Bu_4NF$  in THF (0.43 mL, 0.43 mmol) under Ar. The resulting reaction mixture was warmed to 25 °C, stirred for 2 h, poured into H<sub>2</sub>O (10 mL), and extracted with EtOAc (3  $\times$  10 mL). The combined organic extracts were washed with H<sub>2</sub>O (20 mL), saturated aqueous NaCl (25 mL), dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated in vacuo. Flash chromatography (SiO<sub>2</sub>,  $3.5 \times 10$  cm, 20-50% EtOAc-hexane gradient elution) afforded 15 (0.17 g, 92%) as a white powder. Recrystallization (50% EtOAc-hexane) provided **15** (0.16 g, 88%,  $\geq$  94% ee): mp 118–119 °C (50% EtOAc– hexane); [α]<sup>23</sup><sub>D</sub> –21 (*c* 0.50, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) & 7.42-7.29 (m, 15H), 6.52 (s, 2H), 5.40-5.36 (br s, 1H, NH), 5.09 (s, 6H), 4.69–4.64 (m, 1H), 3.89 (s, 3H), 3.78–3.74 (m, 2H), 1.78 (br s, 1H, OH); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) & 156.3, 152.6 (2C), 138.6, 136.8 (2C), 136.1, 134.7, 128.4 (6C), 128.2, 127.9 (2C), 127.3 (6C), 106.1 (2C), 71.0 (2C), 66.8, 66.1, 60.8, 56.9; IR (neat) v<sub>max</sub> 3332, 3041, 2950, 1685, 1595, 1535, 1509 cm<sup>-1</sup>; FABHRMS (NBA-CsI) m/z 646.1229 (M<sup>+</sup> + Cs, C<sub>31</sub>H<sub>31</sub>NO<sub>6</sub> requires 646.1206). Anal. Calcd for C<sub>31</sub>H<sub>31</sub>NO<sub>6</sub>: C, 72.55; H, 6.08; N, 2.73. Found: C, 72.55; H, 6.11; N, 2.71.

(*R*)-*N*-[(Benzyloxy)carbonyl]-[3,5-bis(benzyloxy)-**4-methoxyphenyl]glycine (2).** Method A: A solution of 15 (84 mg, 0.16 mmol) in acetone (0.4 mL) at 0 °C was added to an aqueous 5% NaHCO<sub>3</sub> solution (0.4 mL), and additional acetone (ca. 0.4 mL), was added until stirring became possible. This heterogeneous mixture was treated sequentially with KBr (1.9 mg, 0.016 mmol) and TEMPO (28 mg, 0.18 mmol). Sodium hypochlorite (NaOCl, Aldrich 4-6% or *ca.* 0.5 M solution, 0.40 mL, 0.21 mmol) was added dropwise over 10 min, and the mixture was stirred at 0 °C. After 1 h, additional NaOCl (0.20 mL, 0.10 mmol) was added. The reaction mixture was stirred for 1 h before the addition of H<sub>2</sub>O (10 mL), and EtOAc (10 mL). The aqueous phase was extracted with EtOAc  $(3 \times 10 \text{ mL})$ , and the combined organic layers were washed with H<sub>2</sub>O (20 mL) and saturated aqueous NaCl (20 mL), dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated in vacuo. Chromatography (SiO<sub>2</sub>,  $3.5 \times 10$  cm, 2-10% CH<sub>3</sub>OH-CHCl<sub>3</sub> gradient elution) afforded **2** (67 mg, 78%,  $\geq$ 94% ee)18 as a white solid: mp 128.5-130.0 °C (EtOHhexane);  $[\alpha]^{25}_{D}$  -72 (c 1.0, CH<sub>3</sub>OH); <sup>1</sup>H NMR (CD<sub>3</sub>OD, 400 MHz)  $\delta$  7.45–7.16 (m, 15H), 6.75 (s, 2H), 5.05 (s, 1H), 4.99 (s, 2H), 4.96 (s, 4H), 3.67 (s, 3H); <sup>13</sup>C NMR (CD<sub>3</sub>OD, 100 MHz) & 173.8, 158.0, 153.9 (2C), 140.0, 138.4 (2C), 138.1, 134.2, 129.5 (6C), 129.0, 128.9 (2C), 128.8 (6C), 108.1 (2C), 72.0 (2C), 67.8, 61.3, 59.3; IR (neat)  $v_{\text{max}}$  3316, 3016, 2937, 1717, 1592 cm<sup>-1</sup>; FABHRMS (NBA-CsI) m/z660.1023 ( $M^+$  + Cs,  $C_{31}H_{29}NO_7$  requires 660.0998). Method B: A solution of 15 (56 mg, 0.11 mmol) in CH<sub>2</sub>-Cl<sub>2</sub> (1.1 mL) at 0 °C was treated with Dess-Martin 12-I-5 periodinane reagent<sup>13</sup> (92 mg, 0.22 mmol), and the resulting heterogeneous mixture was gradually warmed to 25 °C. After 30 min of stirring, the suspension was diluted with Et<sub>2</sub>O (2 mL), poured into a saturated aqueous solution of NaHCO<sub>3</sub> (5 mL) containing Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>-

<sup>(18)</sup> The optical purity of **3** (94% ee) derived from **10** (87% ee) was assessed by chiral phase HPLC separation of the enantiomers on a Chiralpak AD HPLC column (0.46 × 25 cm, 30% 2-propanol-hexane, 1.0 mL/min) alongside racemic material,  $t_{\rm R} = 13.0$  min for (*R*)-**3** and  $t_{\rm R} = 21.0$  min for (*S*)-**3** (97:3), in which the enrichment of the optical purity (≥94% ee) was accomplished by recrystallization of intermediate **15**. Consequently, the optical purity of **2**, the precursor to **3**, following oxidation of **15** must be ≥94% ee. The optical purity of **4** (94% ee) was established upon conversion to the Mosher amide upon treatment with (-)-(*R*)-MTPC1 and <sup>19</sup>F and <sup>1</sup>H NMR analysis alongside racemic material: <sup>19</sup>F NMR (CDCl<sub>3</sub>)  $\delta$  -70.0 (3.0), -70.2 (97.0); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz)  $\delta$  6.52 (s, 1.94), 6.39 (s, 0.06 H). Due to its chromatographic polarity, the optical purity of **5** was not assessed by chiral phase HPLC, but its use in subsequent efforts<sup>6</sup> indicated that little or no racemization occurred in its preparation.

H<sub>2</sub>O (0.19 g, 0.76 mmol), and stirred until two distinct layers were observed. The two layers were separated, and the aqueous phase was extracted with Et<sub>2</sub>O (3  $\times$  7 mL). The combined organic extracts were washed with saturated aqueous NaHCO<sub>3</sub> ( $2 \times 7$  mL) and saturated aqueous NaCl (7 mL), dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated in vacuo to afford crude aldehyde (54 mg, 99%) which was sufficiently pure to use in the subsequent step. A buffered solution of NaClO<sub>2</sub> (Aldrich, 80%, 0.11 g, 0.99 mmol) and NaH<sub>2</sub>PO<sub>4</sub> (0.10 g, 0.74 mmol) in H<sub>2</sub>O (1 mL) was added dropwise to a solution of the aldehyde (54 mg, 0.11 mmol) in 2-methyl-2-butene (0.65 mL) and t-BuOH (2.6 mL, 1:4) at 25 °C. After stirring the reaction mixture for 20 min at 25 °C, the volatiles were removed in vacuo, and the residue was diluted with  $H_2O$  (10 mL) and extracted with EtOAc (3  $\times$  10 mL). The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>) and concentrated in *vacuo*. Flash chromatography (SiO<sub>2</sub>,  $2.5 \times 10$  cm, 5-10% $CH_3OH-CHCl_3$  gradient elution) afforded **2** (43 mg, 75%) over two steps) as a white solid:  $[\alpha]^{25}_{D}$  -72 (*c* 0.9, CH<sub>3</sub>-OH),  $\geq 94\%$  ee).<sup>18</sup>

(R)-N-[(Benzyloxy)carbonyl]-[3,5-bis(benzyloxy)-2-chloro-4-methoxyphenyl]glycine (16). A solution of 15 (25 mg, 0.049 mmol) in acetone (0.2 mL) at 0 °C was added to an aqueous 5% NaHCO<sub>3</sub> solution (0.2 mL), and additional acetone was added (0.3 mL) until stirring became possible. This heterogeneous mixture was treated with TEMPO (0.08 mg, 0.005 mmol) followed by Ca(OCl)<sub>2</sub> (17 mg, 0.12 mmol). The resulting reaction mixture was stirred at 0 °C for 2 h, poured into H<sub>2</sub>O (5 mL), and extracted with EtOAc ( $3 \times 5$  mL). The combined organic layers were washed with H<sub>2</sub>O (10 mL) and saturated aqueous NaCl (20 mL), dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated in vacuo. Chromatography (SiO<sub>2</sub>,  $2.5 \times 10$  cm, 2-10%CH<sub>3</sub>OH-CHCl<sub>3</sub> gradient elution) afforded 16 (14 mg, 52%) as a colorless oil:  $[\alpha]^{25}_{D}$  –56 (*c* 0.025, CH<sub>3</sub>OH); <sup>1</sup>H NMR (CD<sub>3</sub>OD, 400 MHz)  $\delta$  7.38–7.14 (m, 15H), 6.89 (s, 1H), 5.60 (s, 1H), 4.98 (s, 2H), 4.95 (s, 2H), 4.90 (s, 2H), 3.72 (s, 3H); <sup>13</sup>C NMR (CD<sub>3</sub>OD, 100 MHz) δ 174.0, 158.1, 152.8 (2C), 150.3, 146.0, 138.5, 138.0 (2C), 132.5, 129.6 (2C), 129.5 (4C), 129.4 (2C), 129.2, 129.1 (2C), 129.0, 128.9 (2C), 111.0 (2C), 76.6 (2C), 72.2, 67.8, 61.7; IR (neat)  $\nu_{\rm max}$  3393, 1701, 1485, 1414, 1369, 1338, 1218, 1097 cm<sup>-1</sup>; FABHRMS (NBA-CsI) m/z 694.0621 (M<sup>+</sup> + Cs, C<sub>31</sub>H<sub>28</sub>-ClNO<sub>7</sub> requires 694.0609).

tert-Butyl (R)-N-[(Benzyloxy)carbonyl]-[3,5-bis-(benzyloxy)-4-methoxyphenyl]glycine (3). A sealed tube reaction vessel was charged with 2 (0.14 g, 0.27 mmol), anhydrous  $CH_2Cl_2$  (2.7 mL), and concentrated  $H_2$ -SO<sub>4</sub> (2.8  $\mu$ L, 0.053 mmol) at -15 °C. Before the tube was sealed, excess isobutylene gas was bubbled through the suspension until the volume tripled (9 mL, ca. 5 min). The reaction vessel was sealed, and the mixture was warmed to 25 °C and stirred for 24 h. The tube was then cooled to -78 °C, opened to the atmosphere, and allowed to slowly warm to 25 °C. N<sub>2</sub> was bubbled through the solution to remove the residual isobutylene. A 5% aqueous NaHCO<sub>3</sub> solution (10 mL) and EtOAc (10 mL) were added and the mixture was extracted with EtOAc  $(3 \times 10 \text{ mL})$ . The combined organic phases were washed with 5% aqueous NaHCO<sub>3</sub> (20 mL) and saturated aqueous NaCl (20 mL), dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated in vacuo. Chromatography (SiO<sub>2</sub>,  $3.5 \times 10$  cm, 10-40%EtOAc-hexane gradient elution) afforded 3 (0.13 g, 87%, 94% ee<sup>18</sup>) as a white film:  $[\alpha]^{25}_{D}$  -60 (*c* 1.3, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) & 7.44-7.25 (m, 15H), 6.64 (s, 2H), 5.78 (d, 1H, NH, J = 7.2 Hz), 5.12 (s, 1H), 5.10 (s, 4H), 5.09 (s, 2H), 3.90 (s, 3H), 1.32 (s, 9H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz)  $\delta$  169.6, 155.3, 152.7 (2C), 139.3, 136.9 (2C), 136.2, 132.7 (2C), 128.5 (6C), 128.2 (2C), 127.9 (4C), 127.3 (2C), 106.5 (2C), 82.7, 71.0 (2C), 67.0, 60.9, 58.3, 27.8 (3C); IR (film)  $\nu_{\rm max}$  3346, 3056, 2978, 2929, 1721, 1529 cm<sup>-1</sup>; FABHRMS (NBA–CsI) m/z 716.1604 (M<sup>+</sup> + Cs, C<sub>35</sub>H<sub>37</sub>NO<sub>7</sub> requires 716.1624).

*tert*-Butyl (*R*)-(3,5-Dihydroxy-4-methoxyphenyl)glycine (4). A solution of 3 (0.13 g, 0.22 mmol) in CH<sub>3</sub>-OH (2.5 mL) at 25 °C was treated with 10% Pd–C (13 mg) and was stirred under 1 atm of H<sub>2</sub> for 5 h. The reaction mixture was filtered through a pad of Celite (10% CH<sub>3</sub>OH–CHCl<sub>3</sub>, 3 × 10 mL), and the solvent was removed *in vacuo*. Chromatography (SiO<sub>2</sub>, 3.5 × 10 cm, 5–10% CH<sub>3</sub>OH–CHCl<sub>3</sub> gradient elution) afforded **4** (59 mg, 98%) as a white film:  $[\alpha]^{25}_{\rm D}$  –53 (*c* 0.27, CH<sub>3</sub>OH);<sup>18</sup> <sup>1</sup>H NMR (CD<sub>3</sub>OD, 400 MHz) δ 6.24 (s, 2H), 4.07 (s, 1H), 3.64 (s, 3H), 1.30 (s, 9H); <sup>13</sup>C NMR (CD<sub>3</sub>OD, 100 MHz) δ 172.2, 149.9 (2C), 135.3, 134.5, 105.2 (2C), 80.6, 58.8, 57.8, 26.1 (3C); IR (neat)  $\nu_{\rm max}$  3349, 3269, 2958, 2912, 1712, 1560, 1523 cm<sup>-1</sup>; FABHRMS (NBA–NaI) *m/z* 292.1156 (M<sup>+</sup> + Na, C<sub>13</sub>H<sub>19</sub>NO<sub>5</sub> requires 292.1161).

(*R*)-*N*-[(*tert*-Butyloxy)carbonyl]-(3,5-dihydroxy-4methoxyphenyl)glycine (5). A solution of 2 (45 mg, 0.085 mmol) in CH<sub>3</sub>OH (0.9 mL) at 25 °C was treated with 10% Pd-C (4.5 mg, 0.10 wt equiv), and the mixture was stirred under 1 atm of H<sub>2</sub> for 8 h. The reaction mixture was filtered through a pad of Celite (CH<sub>3</sub>OH, 50 mL), the solvent was removed *in vacuo*, and the product was dried under vacuum to afford the deprotected amino acid (18 mg, 0.085 mmol) which was used directly in the following reaction.

A solution of the amino acid (18 mg, 0.085 mmol) in THF-H<sub>2</sub>O (1:1, 1.7 mL) was treated with NaHCO<sub>3</sub> (22 mg, 0.26 mmol) and di-tert-butyl dicarbonate (41 mg, 0.19 mmol) at 25 °C under Ar. After 10 h, aqueous citric acid (pH = 3-4, 1.7 mL) was added to the reaction mixture, and the mixture was extracted with EtOAc ( $2 \times 10$  mL). The combined organic layers were washed with saturated aqueous NaCl (1  $\times$  2 mL), dried (Na<sub>2</sub>SO<sub>4</sub>), filtered, and concentrated *in vacuo*. Chromatography (SiO<sub>2</sub>,  $3 \times 14$ cm, CH<sub>2</sub>Cl<sub>2</sub>-CH<sub>3</sub>OH-HOAc 88:10:6) afforded 5 (22 mg, 78%) as a white film:  $[\alpha]^{25}_{D}$  -89 (*c* 0.8, CH<sub>3</sub>OH);<sup>18</sup> <sup>1</sup>H NMR (CD<sub>3</sub>OD, 400 MHz) δ 6.41 (s, 2H), 4.92 (s, 1H), 3.76 (s, 3H), 1.43 (s, 9H);  $^{13}$ C NMR (CD<sub>3</sub>OD, 100 MHz)  $\delta$  175.3, 157.3, 151.8, 136.5, 135.1, 107.8, 80.6, 60.7, 28.7, 28.5; IR (neat) v<sub>max</sub> 3345, 2976, 2932, 1694, 1600, 1504, 1455, 1161 cm<sup>-1</sup>; FABHRMS (NBA-NaI) m/z 336.1069 (M<sup>+</sup> + Na, C<sub>14</sub>H<sub>19</sub>NO<sub>7</sub> requires 336.1059).

**Acknowledgment.** We gratefully acknowledge the financial support of the National Institutes of Health (CA41101) and the award of a NIH postdoctoral fellow-ship (RMB, GM17548), and we wish to thank Professor Sharpless for use of the Diacel Chiralpak AD HPLC column.

**Supporting Information Available:** <sup>1</sup>H NMR spectra of **6**, **11**, **13**, **16**, and **2**–**5** are provided (8 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

JO960085F